Action Recognition for People Monitoring

INRIA Sophia Antipolis – STARS team Institut National Recherche Informatique et Automatisme Francois.Bremond@inria.fr

http://www-sop.inria.fr/members/Francois.Bremond/

CoBTeK,

rembour

Nice University Hospital

What is Human Action Recognition?

Introduction

• What does action recognition involve?

• Object Detection: Are they Human?

• Action Recognition: What are they doing?

• Full semantic understanding

Introduction: Video Understanding

Activity Recognition

Activity Detection

Classification of Video Clips into Pre-defined Activity Categories

Localizing Pre-defined Activities Temporally in untrimmed Videos

Understanding Activities in trimmed videos is thus important!

Srijan Das - Rui Dai

Action Recognition

Video classification task:

Input: A clipped video (a sequence of frames)

Output: An action label

Action Recognition

 V_3 , l_{V_3} : Pour grains

Problem statement:

- Let's assume that we have a set of videos 𝔍 and a set of corresponding action labels *L*.
- We assume that each video $V \in \mathbb{V}$ contains only one action l_V .
- Thus the goal of action recognition problem is to predict the label l_V based on a video representation V.

To learn **compact** and **discriminative** video representations for the task of activity classification.

Outline : Human Action Recognition

Introduction

- Action Recognition Datasets
- Toyota Smart-Home

- Different Modalities
 - RGB, Optical Flow, 3D Poses

- 4 Attention Mechanisms for Action Recognition
 - 3D Pose guided Attention : P-I3D, Separable STA, VPN, VPN++
 - Transformers

Section 1

Action Recognition Datasets

Activity Recognition for Daily-living activities

Web and movies datasets:

(Kinetics, UCF101, ActivityNet,...)

- Large number of classes
- High inter-class variation
- Camera motion
- Different environments
- Short actions

Different challenges compared to Fine-grained video datasets:

(Toyota smart home, Dahlia, NTU,...)

- Real-time recognition
- High intra-class variation
- Low inter-class variation
- Same environment, background
- Long and Composed actions
 Need to model spatio-temporal relations

Categories of Fine-grained Action Videos

Specific Sports

Instruction videos

Cooking

Ego-centric

Challenges : Activities of Daily Living (ADL)

How to handle time?

14

How to learn view-invariant representations?

How to learn representations for recognizing fine-grained actions? Interacting with objects?

How to disambiguate similar appearance actions?

Daily-living Dataset Description

- NTU RGB-D (NTU-60 / NTU-120) dataset, one of the largest available human activity dataset.
 - □ 58K / 114K videos
 - □ 60 / 120 actions
 - □ 40 / 106 subjects
 - □ 80 / 155 views

- A human activity dataset possessing real-world challenges: **Toyota Smarthome** dataset (TS/TSU).
 - □ 16.1K videos
 - □ 31 actions
 - □ 18 subjects
 - □ 7 views

- A small-scale object-interaction human action recognition dataset: Northwestern-UCLA Multiview Action 3D dataset (NUCLA).
 - □ 1194 videos
 - **1**0 **actions**
 - □ 10 subjects
 - □ 3 views

Section 2

RGB based Deep Networks for Action Recognition

Human Action Recognition

Rui Dai

CNN: Video Classification

2D CNN: feature extraction + classification

Rui Dai

CNN: Video Classification

Inception Module

CNN: Video Classification

I3D Network [CVPR'17]

Same structure as 2D CNN (GoogleNet!)

Rui Dai

Activity Recognition for Daily-living activities 3D CNN: Approaches based on RGB

Section 3

Modalities

Two-stream Network [NIPS'14]

- Using multiple modalities as input!
- RGB: One image randomly sampled from the video. (Spatial: encodes object/appearance information)
- **Flow**: *2L* optical flow images from a video. (<u>Temporal</u>: encodes short-term motion)

224 × 224 × 3

 $^{224\}times224\times2L$

Two-stream Network [NIPS'14]

Drawbacks:

- Temporal information is not encoded along space.
- Long-term motion is ignored!

Multi-Modal : Video Classification

State-of-the-Art : RGB + Optical Flow

(a) Two-streams in I3D
(*Carreira et al., CVPR 2017*).
Late fusion of RGB and
Optical Flow streams.

(b) Teacher-student network in MARS (*Crasto et al., CVPR 2019*).

Knowledge distillation from Optical flow stream to RGB stream.

(c) NAS in AssembleNet (*Ryoo et al., ICLR 2020*)

NAS to combine Optical flow stream to RGB stream.

Less attention has been given to combine Poses with RGB

Multi-Modal : Video Classification

Different input modalities : RGB based and others: Audio, Text, Depth image, Bio Signals (EEG, ECG, EDA, HR) ...

RGB

Depth

Optical Flow

3D skeleton

Complementary Nature

Open fridge

Filtering the noisy appearance patterns Help capturing the body motion

Sit down

Estimation of 3D Poses - Skeletons

Multi-Modal : Video Classification

Multi-Modal: Video Classification

Skeleton based Action Recognition

Skeleton modeling

Approach: Spatial processing (S-LSU)

A Unified Framework for Real-world Skeleton-based Action Recognition

Di Yang,

Pre-training Dataset: Posetics

Real-world actions with skeletons

Toyota Smart-Home Large scale daily living dataset

Action Detection in Untrimmed Video[TP][FP][FN]CorrectlyWronglyMissDetectedDetectedDetected

Take_pills

Section 4

RGB based Deep Networks for Action Recognition with Attention

Activity Recognition for Daily-living activities 3D CNN: Approaches based on RGB

Several Attention Mechanism:

- Primary purpose of Attention: To imitate human visual cognitive systems and focus on essential features. (or) <u>Learn how to pick</u> relevant information from input data
- Key Idea: To focus on the significant parts in an image and suppress unnecessary information.
- CNN with Attention: are used to make CNN learn and focus more on the important information, rather than learning non-useful background information.

Original Image

Grad-CAM 'Cat'

Grad-CAM 'Dog'

The girl is drinking water from a bottle

Do we really need the whole video to infer that?

Several Attention Mechanisms:

- Squeeze-and-Excitation Attention (Channel Attention)
- Convolutional Block Attention Module (Channel + Spatial Attention)
- Self-Attention
- Spatial-Temporal Attention

Sharma et al., (ICLRW 2015)

Xiaong et al., (AAAI 2018)

Activity Recognition for Daily-living activities CNN : Approaches based on Self-Attention

Self-Attention Block

Self-attention

extracts weight-map from itself (without external information).

A normalizing process

Find one-to-one relations (correlations) between features at each time point

X. Wang, R. B. Girshick, A. Gupta, and K. He. Non-local neural networks. CVPR 2018

Activity Recognition for Daily-living activities 3D CNN : Approaches based on RGB

- > Computes attention of each pixel as a weighted sum of the features of all the pixels in the space-time volume.
- Relies too much on the appearance of the actions, i.e., pixel position within space-time volume.

Drawbacks:

- Too rigid Spatio-temporal kernels to capture salient features for subtle spatio-temporal patterns
- > No specific operations to help disambiguate similarity in actions.
- > 3D (XYT) CNNs are not view-adaptive.

3D Pose guided Attention Mechanisms for Action Recognition

Input: RGB images 3D Poses Output: Action Labels

Action Recognition Framework

Activity Recognition : Feature Selection Parts based I3D (P-I3D) [Srijan WACV19]

To address low inter-class variation: we propose new combination of Deep Features:

 Attention Mechanism to learn the attention weights along 3D joints for the action features depending on the current action

⁴¹**Activity Recognition :** Feature Selection Parts based I3D (P-I3D) [Srijan WACV19]

Drawbacks

- Body part Representation is not a flexible representation for human actions
- Costly in terms of # training parameters
- Temporal attention is missing.

How should we incorporate temporal attention in the current framework?

3D Pose guided Attention Mechanisms for Action Recognition [Srijan ICCV19]

Separable Spatio-Temporal Attention (STA)

3D Pose guided Attention Mechanisms for Action Recognition (VPN) [Srijan ECCV20]

Accuracy vs Time on Toyota Smarthome

- Video-Pose models (like VPN) rely on the availability of 3D Poses.
- Model inference time is significantly higher than RGB based methods.

What is the best way of transferring cross-modal knowledge?

44

Accuracy vs Time on Toyota Smarthome

We introduces VPN++ that explores the concept of knowledge distillation to infuse pose stream into RGB stream.

1. Feature-level distillation (VPN-F)

- Positive-negative pair construction
- Supervised Contrastive Distillation

$$\mathcal{L}_{SCD} = \frac{1}{|\mathcal{B} - \mathcal{N}|} \sum_{i} \log[\mathcal{T}_{F}(P_{j}), E_{F}(V_{i})] + \sum_{j \neq i} \log(1 - [\mathcal{T}_{F}(P_{j}), E_{F}(V_{i})])$$

where $[\mathcal{T}_{F}(P_{j}), E_{F}(V_{i})] = \frac{e^{\mathcal{T}_{F}(P_{j})^{\mathsf{T}}E_{F}(V_{i})}}{e^{\mathcal{T}_{F}(P_{j})^{\mathsf{T}}E_{F}(V_{i})} + \mathcal{M}}$

2. Attention-level distillation (VPN-A)

Teacher-Student choice

- Teacher VPN (Pose driven attention network)
- Student RGB + self-attention block

Where and how should you distillate?

- Attention or modulated features! (To learn the modulated features, you need to learn the attention weights)
- Contrastive training or Collaborative training!

(learning attention is an iterative process)

 $\mathcal{L}_D = ||A_{\mathcal{T}}^+ - E_A(A_{\mathcal{S}})||^2$

47

Comparison to the State-of-the-art

proposed models

Methods	Pose	RGB	Att.	CS	CV ₂
LSTM [Mahasseni et al., CVPR 2016]	\checkmark	х	×	42.5	17.2
AGCN-J* [Shi et al., CVPR 2019]	\checkmark	х	×	49.5	50
DT [Wang et al., CVPR 2011]	х	\checkmark	×	41.9	23.7
I3D [Carreira et al., CVPR 2017]	х	\checkmark	×	53.4	45.1
I3D + NL [Wang et al., CVPR 2018]	х	\checkmark	\checkmark	53.6	43.9
AssembleNet++ [Ryoo et al., ECCV 2020]	х	\checkmark	\checkmark	63.6	-
NPL ^[Piergiovanni et al., CVPR 2021]	х	\checkmark	×	-	54.6
P-13D	✓	√	✓	54.0	48.7
Separable STA	✓	√	✓	54.2	50.3
VPN	✓	√	✓	60.8	53.5
VPN++	0	√	×	69.0	54.9
VPN++ + 3D Poses	✓	✓	\checkmark	71.0	58.1

Action classification accuracy (in %) on Toyota Smarthome dataset

Methods $V_{1.2}^{3}$ Att. Data

Action classification accuracy (in %) on NUCLA dataset

Depth	х	91.9
Pose	х	86.1
Pose	х	89.2
RGB	х	86.0
RGB + <i>Pose</i>	✓	90.1
RGB + Pose	~	93.1
RGB + Pose	√	92.4
RGB + Pose	√	<u>93.5</u>
RGB + Pose	√	91.9
RGB + Pose	√	<u>93.5</u>
	Depth Pose Pose RGB RGB + Pose RGB + Pose RGB + Pose RGB + Pose RGB + Pose	DepthxPosexPosexRGBxRGB + $Pose$ \checkmark RGB + Pose \checkmark

Going Beyond Video-Pose

Can we generalize VPN++ over other modalities?

Stream	SH	NTU-60	NTU-60
	(CS)	(CS)	(CV)
RGB	53.4	85.5	87.3
OF	51.8	85.7	92.8
RGB + OF	57.3	87.1	93.6
MARS + RGB [50]	58.1	88.2	92.9
VFN++	59.0	90.1	93.4
VFN++ + OF	66.4	94.6	97.2

VFN++ - Combining RGB and Optical Flow

Effectiveness of Video-Flow Network++ representation using our SCD loss

VPFN++ - Combining RGB, Pose and Optical Flow

Fusion	SH	NTU-60	NTU-60
	(CS)	(CS)	(CV)
RGB + OF + Pose	64.4	90.2	95.9
VPN++	69.0	91.9	94.9
VPFN	69.7	92.1	95.5
VPFN + Pose	71.7	95.1	98.2
VPFN + Pose + OF	72.9	96.7	99.1

TABLE 12: Combination of RGB, Pose and Flow modalities into a single model. Here VPFN is VPN++ + FARS.

Action Detection Framework

Temporal Modelling/Encoder: MS-TCT

- Temporal merge block introduces temporal hierarchy (T-Conv., Stride 2)
- Multi-head Attention and Convolution are used for temporal modelling
- Linear layer is for transition between two layers
- Modelling Global and Local temporal relations at multiple scales.

Action Detection Framework

How should we leverage the modalities in action detection?

- 1. Early or Late fusion
- 2. Attention-based Guidance
- 3. Knowledge Distillation (other modalities only at training time)

Action Detection Framework

Extension of VPN++ for long untrimmed videos

Augmented RGB – RGB stream hallucinating Poses / OF.

	Charades	PKU-MMD	TSU-CS	TSU-CV
Teacher-OF	18.6	68.4	29.4	17.5
Teacher-Pose	9.8	65.0	26.2	22.4
Vanilla-RGB	22.3	79.6	29.2	18.9
Two-stream RGB + Pose	23.0	82.9	32.6	23.7
Two-stream RGB + OF	24.8	83.4	33.5	19.5
Pose Augmented RGB	23.2	84.7	32.4	23.6
OF Augmented RGB	24.6	85.5	32.8	19.3
Pose + OF Augmented RGB	24.9	86.3	33.7	23.8

Rui Dai, Srijan Das, Francois Bremond, "Learning an Augmented RGB Representation with Cross-Modal Knowledge Distillation for Action Detection", ICCV 2021.

3D Pose guided Attention Mechanisms for Action Recognition

Conclusion

VPN : effective strategy to exploit 3D poses to guide RGB cues for recognizing Activities of Daily Living (ADL) in real-world scenarios.

- > 3 variants of spatio-temporal attention mechanisms for the recognition of ADL.
- The codes and models are available at <u>https://github.com/srijandas07</u>. The inference time of these models are close to real-time given the poses.

VPN++ : effective strategy to exploit 3D poses when poses are not available at inference time.

> These models have been evaluated on four public datasets achieving state-of-the-art results.

For datasets with Laboratory settings, the accuracy is > 92% For real-world datasets, the accuracy is up to 69%

what about the rest 31%?

Section 4

Transformer

Transformers are based on Self-Attention

- Positional Encoding
- Multi-head attention
- Feed Forward
- Outputs

Transformer and Convolution

Pros: Global relation Attention enhanced

Cons: More Flops Loss location info

Vision Transformer (ViT):

 In ViTs, images are represented as sequences, and class labels for the image are predicted, which allows models to learn image structure independently.

• How ViT works?

- Split an image into patches (Tokenize)
- Flatten the patches
- Produce lower-dimensional linear embeddings from the flattened patches
- Add positional embeddings
- Feed the sequence as an input to a standard transformer encoder (for interaction among tokens)
- Pretrain the model with image labels (fully supervised on a huge dataset)
- Finetune on the downstream dataset for image classification

Pyramid Vision Transformer

ViT vs. CNN:

- ViT has more similarity between the representations obtained in **shallow and deep layers** compared to CNNs.
- Unlike CNNs, ViT obtains the global representation from the shallow layers, but the local representation obtained from the shallow layers is also important.
- Skip connections in ViT are even more influential than in CNNs (ResNet) and substantially impact the
 performance and similarity of representations.
- ViT retains more spatial information than CNN.
- ViT can learn high-quality intermediate representations with large amounts of data.
- ViT is more **Scalable and Efficient** compared to CNN.

Attention Mechanisms for Action Recognition

Future Work

- > Towards understanding human object relationships (better visual features)
- Better visual base network (e.g. ViViT? VideoMAE? DinoV2? VifiCLIP?)
- handling the spatial resolution (super-resolution) which is crucial for real-world ADL recognition (object)
- End-to-End training for the visual encoder (e.g. memory bank, adapters)
- > spatio-temporal context by encoding human object relationships
- Towards multi-modal video representation
- Going beyond RGB + one modality: + depth, optical flow, 3D poses, audio, text, physiological, etc.

> Towards unsupervised video representation

Pre-trained the model to do complicated tasks by self-supervision/ contrastive learning/ masking

- learning the synchronization between RGB & Poses (i.e. common subspace)
- Video MAE Mask Auto-Encoder
- Real-World Activity Detection is the next step!
 - Extending Temporal Model for activity detection

utilizing 3D poses for precise prediction of starting and ending of an activity, new models (i.e. mamba).

Questions ?